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Abstract

Researchers have proposed to use data of human pref-
erence feedback to fine-tune text-to-image generative mod-
els. However, the scalability of human feedback collec-
tion has been limited by its reliance on manual annota-
tion. Therefore, we develop and test a method to automat-
ically score user preferences from their spontaneous facial
expression reaction to the generated images. We collect a
dataset of Facial Expression Reaction to Generated Images
(FERGI) and show that the activations of multiple facial
action units (AUs) are highly correlated with user evalu-
ations of the generated images. We develop an FAU-Net
(Facial Action Units Neural Network), which receives in-
puts from an AU estimation model, to automatically score
user preferences for text-to-image generation based on their
facial expression reactions, which is complementary to the
pre-trained scoring models based on the input text prompts
and generated images. Integrating our FAU-Net valence
score with the pre-trained scoring models improves their
consistency with human preferences. This method of au-
tomatic annotation with facial expression analysis can be
potentially generalized to other generation tasks. The code
is available at https://github.com/ShuangquanFeng/FERGI,
and the dataset is also available at the same link for re-
search purposes.

1 Introduction
The rapid recent advancements in text-to-image generative
models have enabled the generation of high-fidelity images
aligned with text prompts [54, 58, 60–63]. To better im-
prove the fidelity of the generated images and their align-
ment with the text prompts, researchers collected large-
scale datasets of human preference feedback on images gen-
erated by text-to-image models [35, 42, 77–79, 86] and pro-
posed methods of fine-tuning the models with data of hu-
man preference feedback [24, 41, 79].

*Equal Contribution

However, the scalability of human feedback collection
has still been limited by its reliance on manual annotation.
Researchers have used the CLIP score [59], Aesthetic score
[64], BLIP score [43], ImageReward score [79], PickScore
[35], and HPS v2 score [77] to automatically score human
preferences of text-to-image generation based on the input
text prompts and the generated images. In this study, we
develop and test a system to automatically score user pref-
erences from their spontaneous facial expression reaction
to the generated images, which is complementary to the
models based only on the texts and images. This automatic
scoring requires zero additional effort from the real users of
text-to-image generators.

We present the Facial Expression Reaction to Generated
Images (FERGI) dataset, which comprises video recordings
of 33 participants’ facial expression reaction to 2827 images
generated by Stable Diffusion (SD) v1.4 [62] based on 576
different self-drafted text prompts, along with their feed-
back on the generated images from manual input. We esti-
mate the activation of facial action units (AUs), as defined
in the Facial Action Coding System (FACS, a comprehen-
sive system breaking down facial expressions into individ-
ual components of AUs of muscle movements [21]), in the
facial expression reaction videos with a model we trained
on external datasets and show that the activations of mul-
tiple AUs are highly correlated with user evaluations of the
generated images. We further propose a method of automat-
ically scoring user preferences by detecting the activations
of the AUs in the facial expression reaction to the generated
images and feeding them into a neural network.

2 Related Work

Text-to-Image Generation and Evaluation. Various mod-
els have been developed for text-to-image generation, in-
cluding Generative Adversarial Networks (GANs) [5, 15,
16, 25, 31, 32], Variational autoencoders (VAEs) [10, 34,
68], flow-based models [17, 18, 33], autoregressive mod-
els (ARMs) [9, 11, 71, 72, 84], and diffusion models
(DMs) [28, 66, 67]. More recent advancements in DMs
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[14, 54, 58, 61–63] have achieved great success in gen-
erating high-quality images and attracted widespread pub-
lic attention. As traditional evaluation metrics like Incep-
tion Score (IS) [3], Fréchet Inception Distance (FID) [27],
and CLIP score [59] failed to comprehensively capture hu-
man preferences for text-to-image generation, researchers
have proposed to specifically train human preference scor-
ing models based on large-scale human feedback datasets,
such as Human Preference Score (HPS) [78], ImageRe-
ward [79], PickScore [35], and Human Preference Score v2
(HPS v2) [77], and demonstrated the effectiveness of us-
ing them to improve the text-to-image generative models
[24, 35, 77, 79].

Human Feedback Datasets. There are multiple
datasets of human feedback on text-to-image generation, in-
cluding AGIQA-1K [86], Human Preference Dataset (HPD)
[78], ImageReward [79], Pick-a-Pic [35], AGIQA-3K [42],
and Human Preference Dataset v2 (HPD v2) [77]. To the
best of our knowledge, our FERGI dataset is the first to in-
clude both manual annotations of generated images and the
associated facial expression reaction videos.

Facial Expression Recognition and Applications. Au-
tomatic facial expression recognition has advanced rapidly
in recent years [44]. As emotional responses to im-
age generation can be more complicated than single cate-
gories of the most widely-researched seven basic emotions
[19, 20, 50], we decided to analyze the facial expression re-
actions directly in terms of muscle movements, as defined
by AUs in FACS [21]. AU detection and estimation has at-
tracted increasing interest [12, 29, 36, 37, 45, 46, 49, 65,
69, 70, 73, 87–89] and been used for facial emotion recog-
nition [80–83]. For example, researchers have shown that
the activation of the corrugator (activated in AU4) and zy-
gomaticus (activated in AU12) are associated with negative
and positive emotions respectively and are the most inves-
tigated muscle activations in studying affect and emotion
[76]. Also, the activity of the corrugator supercilii (acti-
vated in AU4) is positively associated with amygdala and
negatively associated with ventromedial prefrontal cortex
activity [26] and increases with negative stimuli, such as
negative images [6, 7, 39, 40]. For applications, [4, 75]
showed the effectiveness of using facial expression to in-
fer/analyze human preferences.

3 FERGI Dataset

3.1 Participants
39 participants were recruited from the SONA system of
University of California San Diego (UCSD) and completed
the study asynchronously on personal computers. 6 partic-
ipants were removed from the dataset for various reasons,
including failure to participate, failure in video recording,

and not permitting sharing of their video recordings for re-
search. This resulted in a dataset of 33 participants that will
be made available for research. The collection and usage of
human participant data in the dataset were approved by the
Institutional Review Board (IRB) of UCSD.

3.2 Data Collection Procedure

Each participant completed multiple sessions of data collec-
tion. In each session, the participant drafted one text prompt
and viewed 5 images generated from the input text prompt.
A flow chart of the procedure of each session is shown in
Fig. 1. Details are explained below.

3.2.1 Prompt Creation

There are two types of sessions, structured input and free-
form input. In both types, the participant can freely draft
any text prompt as long as it is not NSFW. The only dif-
ference between the two types lies in how the input text
prompt is created. In a structured input session, the partici-
pant fills out a form to separately specify different elements
desired in the images to generate: animate objects, inani-
mate objects, interactional relations (between two objects),
positional relations (between two objects), location, style
(of the image), and keywords. Based on the contents of the
form, a text prompt is then automatically generated by the
Large Language Model (LLM) OpenAI gpt3.5-turbo. The
participant can freely adjust the generated prompt as the fi-
nal input text prompt. In a free-form input, the participant
directly enters the entire final input text prompt.

3.2.2 Recording

After the input text prompt is finalized, the participant is
directed to a webcam preview to confirm that the webcam
captures their face appropriately. The webcam is then used
to record throughout the rest of the session. The configu-
ration of the raw videos varied based on the participant’s
device and browser. Though, recorded videos of most par-
ticipants have a resolution of 640 × 480, and all recorded
videos were standardized to 30 FPS afterwards.

3.2.3 Image Presentation, Annotation, and Ranking

In each session, a total of 5 images generated by SD v1.4
[62] from the input text prompt are presented and annotated
sequentially and ranked afterwards (present image 1 → an-
notate image 1 → . . . → present image 5 → annotate image
5 → rank 5 images). The image presentation and annotation
followed the webcam preview. The detailed procedures for
the presentation and annotation of each generated image are
as follows:
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Figure 1. Procedure of one session in data collection.

• Baseline (5 seconds): The website displays the “prepar-
ing image” status text at the center of the page along
with the input text prompt. No specific facial-expression-
eliciting event is expected to happen during this period.

• Present (5 seconds): The generated image is presented
at the center of the webpage along with the input text
prompt. The participant’s facial expression reaction to
the generated image is collected within this interval.

• Annotate (no time restriction): The website displays the
prompt, the generated image (moved to the right side),
and the annotation survey. The participant annotates the
image manually by filling out the survey during this in-
terval. The survey was adapted from the survey designed
for ImageReward [79] and includes the following ques-
tions: important elements not reflected in the image (free-
response question), overall rating (on a scale of 1 (worst)
to 7 (best)), image-text alignment rating (on a scale of 1
to 7), fidelity rating (on a scale of 1 to 7), issues of the
image1 (multi-choice question), and emotions felt when
seeing the image (multi-choice question).

After the annotation of the last image, the participant ranks
the 5 generated images from best to worst, and the data of
the session is uploaded to the web server ending the session.

3.3 Data Preprocessing
For each image, two clips are extracted from the recorded
video: a 5-second “baseline clip” of the participant’s facial

1For the first 7 out of 33 participants (or 8 out of the total 39 partici-
pants), there was a bug (later fixed) in checkbox selection for answering the
questions regarding “issues of the image” that made the recorded answers
unreliable, so the data regarding their answers for this question should not
be used in analysis.

expression during the baseline period and a 5-second “re-
action clip” of the participant’s facial expression during the
image presentation period.

SD v1.4 [62] outputs an all-black image when it detects
the original output image might be inappropriate. A total of
53 such images out of 2880 total generated were generated
in the dataset. The data associated with these images were
excluded from further analysis, resulting in fewer than 5
valid images for some input text prompts.

4 AU Model Training
We analyze the facial expression reaction of the users by
estimating the activation of their AUs. We trained our AU
estimation model on the DISFA [52, 53] and DISFA+ [51]
datasets. They are among the largest, most popular, and
most cited AU datasets with intensity annotations. In these
datasets, each frame is manually annotated by a human ex-
pert with intensities on a scale of 0 to 5, for activation of
AU1 (inner brow raiser), AU2 (outer brow raiser), AU4
(brow lowerer), AU5 (upper lid raiser), AU6 (cheek raiser),
AU9 (nose wrinkler), AU12 (lip corner puller), AU15 (lip
corner depressor), AU17 (chin raiser), AU20 (lip stretcher),
AU25 (lips part), and AU26 (jaw drop). (See Fig. S10 for a
visual reference guide for the analyzed AUs.) Video frames
are first preprocessed with face detection [48], face align-
ment [8], and a combination of histogram equalization and
linear mapping [38] before being fed into the model for
training, testing, or inference. For model training, we used
the neural network IR-50 [13] pre-trained on Glink360k
[1] and fine-tuned it on the DISFA and DISFA+ datasets
[51, 53]. A single network learned the estimation of all la-
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beled AUs with both regression and ordinal classification
[55]. More details of the training of the AU model is elabo-
rated in the Appendix / Supplementary Materials.

The comparison between our AU estimation model’s
performance on the DISFA dataset and other state-of-the-art
models, including OpenFace 2.0 [2], CCNN-IT [73], 2DC
[47], SCC-Heatmap [23], and iARL [65] is shown in Tab. 1.
Our model’s Pearson’s r (higher is better) is close to that of
OpenFace 2.0; our model’s ICC(3,1) (higher is better) is the
best among all models. Although our model’s MAE (lower
is better) is less competitive among all models, we believe
that ICC(3,1) is a better metric for evaluating the perfor-
mance of AU estimation models on the DISFA dataset con-
sidering the high imbalance of the dataset.

5 Facial Feature Extraction

In this section, we elaborate the procedure of extracting fa-
cial features from the video clips associated with each gen-
erated image based on the trained AU recognition model.
Similar procedures were used to extract features from base-
line clips and reaction clips. Further details are in the Ap-
pendix / Supplementary Materials.

5.1 Data Filtering

Robustness against face occlusion and faces with non-
frontal poses is an ongoing challenge for facial expression
recognition models [30, 85]. Our AU model was trained on
datasets consisting predominantly of frontal facial images
without occlusion and thus for each 5-second video clip,
we exclude frames with a low face detection confidence
score (given by MediaPipe [48]) and frames with an off-
angle pitch or yaw (estimated based on detected facial land-
marks [8]). If a clip has more than 20% of its total frames
excluded, the whole clip, and its associated data (survey and
ranking results) are excluded from further analysis.

5.2 AU Activation Value

We compute an AU activation value αi for each trained AUi
in each video clip. The AU activation value is computed as
follows:
• Firstly, the intensity of each AU for each frame

of the video clip is estimated with the AU model:
ŷ
(1)
i,reg, ŷ

(2)
i,reg, . . . , where the superscript indicates the in-

dex of the frame.
• Secondly, a moving window mean of the estimated AU

intensities for every 0.1 seconds (3 frames for 30 FPS) is
computed:

¯̂y
(k)
i,reg =

1

3
Σk+2

k′=kŷ
(k′)
i,reg (1)

for all k with defined ŷ
(k+1)
i,reg and ŷ

(k+2)
i,reg (as they may be

undefined for frames at the end of the video clip or frames
adjacent to excluded frames).

• Finally, the AU activation of the clip as the difference be-
tween the maximum AU intensity within the video clip
and the AU intensity of the first 0.1 seconds is computed:

αi = max
k

(¯̂y
(k)
i,reg)− ¯̂y

(1)
i,reg. (2)

6 Experiments

6.1 Statistical Analysis
We started with analyzing statistical relationships between
the AU activation values and answers in the annotation sur-
vey for each image. The primary results are as follows:
• Overall Ratings. The participant’s overall ratings (on a

scale of 1 to 7) of the generated images have a significant
positive correlation with the activation values of AU2 and
AU12 and a significant negative correlation with the ac-
tivation values of AU4 and AU9 as shown in Figs. 2a,
2b, 2f and 2g (Spearman correlation: ρ ≈ 0.09 and
p < 5×10−5 for AU2, ρ ≈ −0.18 and p < 5×10−17 for
AU4, ρ ≈ −0.09 and p < 5 × 10−5 for AU9, ρ ≈ 0.08
and p < 5× 10−4 for AU12).

• Extremity of Overall Ratings. The extremities of the
participant’s overall ratings (on a scale of 1 to 7) of the
generated images (computed as the magnitude of devia-
tion from the midpoint rating (|overall rating − 4|) have
a significant positive correlation with the activation val-
ues of AU1, AU2, AU5, AU12, and AU20 as shown in
Figs. 2c to 2g (Spearman correlation: ρ ≈ 0.10 and
p < 5 × 10−6 for AU1, ρ ≈ 0.11 and p < 5 × 10−7

for AU2, ρ ≈ 0.08 and p < 5× 10−4 for AU5, ρ ≈ 0.14
and p < 5×10−11 for AU12, ρ ≈ 0.08 and p < 1×10−4

for AU20).
• Emotions. For the question “Did you feel any of the fol-

lowing emotions when you saw the image?”, the partic-
ipant can independently select 0 to 6 answers from the
six options: surprised, disgusted, amused, scared, dis-
appointed, and satisfied. Each of the reported emotions
was found to be significantly correlated with the activa-
tion values of multiple AUs.
– Surprised. “Surprising” images are associated with

higher activation values of AU9, AU12, AU25, and
AU26 as shown in Fig. 3a (Wilcoxon rank-sum tests:
z ≈ 3.78 and p < 5 × 10−4 for AU9, z ≈ 4.29 and
p < 5 × 10−5 for AU12, z ≈ 4.01 and p < 1 × 10−4

for AU25, z ≈ 4.45 and p < 1× 10−5 for AU26).
– Disgusted. “Disgusting” images are associated with

higher activation values of AU4, AU5, and AU9 as
shown in Fig. 3b (Wilcoxon rank-sum tests: z ≈ 8.43
and p < 1×10−16 for AU4, z ≈ 3.94 and p < 1×10−4
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Table 1. Comparison of our AU estimation model’s performance on the DISFA dataset with other models

AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg.
Pearson’s r (higher is better)

OpenFace 2.0 .64 .50 .70 .67 .59 .54 .85 .39 .49 .22 .85 .67 .59
Our Model .53 .46 .74 .57 .56 .60 .85 .42 .41 .21 .94 .66 .58

ICC(3,1) (higher is better)
CCNN-IT .18 .15 .61 .07 .65 .55 .82 .44 .37 .28 .77 .54 .45

2DC .70 .55 .69 .05 .59 .57 .88 .32 .10 .08 .90 .50 .50
SCC-Heatmap .73 .44 .74 .06 .27 .51 .71 .04 .37 .04 .94 .78 .47

iARL .13 .36 .68 .22 .56 .36 .86 .52 .37 .12 .96 .60 .48
Our Model .53 .46 .74 .56 .55 .57 .85 .41 .40 .20 .93 .66 .57

MAE (lower is better)
CCNN-IT 87 .63 .86 .26 .73 .57 .55 .38 .57 .45 .81 .64 .61

SCC-Heatmap .16 .16 .27 .03 .25 .13 .32 .15 .20 .09 .30 .32 .20
iARL .30 .31 .52 .04 .36 .30 .31 .05 .33 .08 .29 .26 .26

Our Model .37 .39 .50 .14 .37 .21 .33 .24 .47 .23 .32 .42 .33

1 2 3 4 5 6 7
Overall Rating

0.0

0.5

1.0

1.5

A
U

4 
A

ct
iv

at
io

n 
V

al
ue

(a) AU4

1 2 3 4 5 6 7
Overall Rating

0.0

0.5

1.0

1.5

A
U

9 
A

ct
iv

at
io

n 
V

al
ue

(b) AU9

1 2 3 4 5 6 7
Overall Rating

0.0

0.5

1.0

1.5
A

U
1 

A
ct

iv
at

io
n 

V
al

ue

(c) AU1

1 2 3 4 5 6 7
Overall Rating

0.0

0.5

1.0

1.5

A
U

5 
A

ct
iv

at
io

n 
V

al
ue

(d) AU5

1 2 3 4 5 6 7
Overall Rating

0.0

0.5

1.0

1.5

A
U

20
 A

ct
iv

at
io

n 
V

al
ue

(e) AU20

1 2 3 4 5 6 7
Overall Rating

0.0

0.5

1.0

1.5

A
U

2 
A

ct
iv

at
io

n 
V

al
ue

(f) AU2

1 2 3 4 5 6 7
Overall Rating

0.0

0.5

1.0

1.5

A
U

12
 A

ct
iv

at
io

n 
V

al
ue

(g) AU12

Figure 2. Overall ratings highly correlated with AU activation values. The distributions of the activation values of multiple AUs for
images of different ratings. Each subfigure shows the results for a different AU (indicated in the captions) and contains 7 boxplots for AU
activation values (on the y-axis) for images with 7 different ratings along the x-axis. In each boxplot, the bottom/top of the box represents
the first/third quartile (25th/75th percentile) of the AU activation values, and the line in the middle of the box represents the median. Blue
bars are used for AUs that are significantly correlated with the ratings while brown bars are used for AUs that are significantly correlated
with the extremity of the ratings (computed as |overall rating − 4|). AU2 and AU12 are shown in blue and brown reflecting significance
(after multiple comparisons) for both ratings and extremity of ratings. The darker blue and darker brown colors show the ratings associated
with higher AU activations. The numbers of ratings from 1 to 7 are 104, 185, 258, 456, 581, 403, and 216 respectively.

for AU5, z ≈ 4.87 and p < 1× 5−6 for AU9).
– Amused. “Amusing” images are associated with

higher activation values of AU6, AU9, AU12, AU20,
and AU25 as shown in Fig. 3c (Wilcoxon rank-sum
tests: z ≈ 7.00 and p < 1× 10−11 for AU6, z ≈ 5.01

and p < 1×10−6 for AU9, z ≈ 9.15 and p < 1×10−19

for AU12, z ≈ 6.12 and p < 1 × 10−9 for AU20,
z ≈ 3.85 and p < 1× 10−4 for AU25).

– Scared. “Scary” images are associated with higher ac-
tivation values of AU4 and AU5 as shown in Fig. 3d
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Figure 3. Reported emotions highly correlated with AU activation values. The distributions of the activation values of multiple AUs for
images eliciting different emotions of the participants as reported in answers to the question “Did you feel any of the following emotions
when you saw the image?”. Each subfigure shows results for a different emotion (indicated in the captions) and contains multiple pairs
of boxplots representing the results for different AUs. The indices of the AUs are along the x-axis, while the y-axis represents the AU
activation values in the reaction clip of each image. The parenthesized numbers in the legends give the number of responses of that type. In
each pair of boxplots, the boxplot on the left/right side represents the AU activation values for images that did/didn’t elicit the corresponding
emotion. In each boxplot, the bottom/top of the box represents the first/third quartile (25th/75th percentile) of the AU activation values,
and the line in the middle of the box represents the median.

(Wilcoxon rank-sum tests: z ≈ 5.60 and p < 5× 10−8

for AU4, z ≈ 4.39 and p < 5× 10−5 for AU5).
– Disappointed. “Disappointing” images are associated

with lower activation values of AU1, AU2, and AU12
and higher activation values of AU4 as shown in Fig. 3e
(Wilcoxon rank-sum tests: z ≈ −4.25 and p < 5 ×
10−5 for AU1, z ≈ −5.82 and p < 1× 10−8 for AU2,
z ≈ 4.82 and p < 5 × 10−6 for AU4, z ≈ −4.86 and
p < 5× 10−6 for AU12).

– Satisfied. “Satisfying” images are associated with
lower activation values of AU4, AU5, AU9, and AU25
as shown in Fig. 3f (Wilcoxon rank-sum tests: z ≈
−9.07 and p < 5 × 10−19 for AU4, z ≈ −6.62 and
p < 5×10−11 for AU5, z ≈ −6.93 and p < 5×10−12

for AU9, z ≈ −3.79 and p < 5× 10−4 for AU25).

Note that the results presented above selectively include
the AUs whose associated p-values (as reported before cor-
rections) are below the Bonferroni-corrected significance

threshold of 0.05/[12 × (2 + 6)] (12 investigated AUs, 2
tests for overall ratings (1 for the raw rating and 1 for the
extremity of the rating), and 6 emotions).

6.2 Automatic Annotation of User Prefer-
ences between Image Pairs

6.2.1 Pre-trained Scoring Models

Researchers have used the CLIP score [59], Aesthetic score
[64], BLIP score [43], ImageReward score [79], PickScore
[35], and HPS v2 score [77] to estimate human preferences
of text-to-image generation based on the input text prompts
and the generated images.

Among these baseline scoring models, ImageReward,
PickScore, and HPS v2 were all trained specifically on
datasets of human preferences of text-to-image genera-
tion and are supposed to outperform the other models
[35, 77, 79]. To introduce a potentially more competitive
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baseline score, we further combine them to form an ensem-
ble baseline score

sens = wIRsIR + wPicksPick + wHPSv2sHPSv2 (3)
subject to wIR + wPick + wHPSv2 = 1, (4)

where sens represents the ensemble baseline score, sIR,
sPick, and sHPSv2 represent the ImageReward score,
PickScore, and HPS v2 score respectively, and wIR, wPick,
and wHPSv2 represent their respective weights.

A leave-one-participant-out (LOPO) procedure was ap-
plied in the fitting of the three weights wIR, wPick, and
wHPSv2; we used grid search with a granularity of 0.1
to optimize the accuracy of image preference prediction.
Since the scales of the scores are different, they were each
z-scored using their mean and standard deviation on the
training set. We obtained the same results of wIR = 0.1,
wPick = 0.6, and wHPSv2 = 0.3 for all LOPO training sets.

6.2.2 FAU-Net Valence Score

We aim to use the estimated AU activation values to auto-
matically score user preferences between images generated
from the same input text prompt and propose that this scor-
ing more directly reflects the user’s reaction to the gener-
ated image and is complementary to the pre-trained scoring
models. To achieve this goal, we train an FAU-Net (Fa-
cial Action Units Neural Network) to do automatic scor-
ing. In the FAU-Net, the estimated activation values of the
12 investigated AUs are used as the inputs; each activa-
tion value is first preprocessed with a linear transformation
with trained parameters and sigmoid function (σ(a · α+ b)
with the initializations of a = 1 and b = −1 for encour-
aging transformations of positive correlation for better in-
terpretability); then the preprocessed AU activation values
are used as inputs to a hidden layer with 16 neurons which
feeds into a single ouput neuron representing the AU eval-
uation score of the image; this output unit receives inputs
from both the 16 neurons of the hidden layer and the 12
preprocessed AU activation values. The sigmoid function is
used as the activation function for all neurons. The network
is trained with a RankNet loss function using the reaction
clips and ranking order given by the participant for image
pairs generated from the same text prompts and an L1 reg-
ularization with a coefficient of 10−4. For model training,
we use the Adam optimizer with an initial learning rate of
10−3 and a single batch for all data to train the neural net-
work for 300 epochs using a single NVIDIA RTX A6000
48GB GDDR6 GPU for about 15 minutes.

Our FAU-Net is trained with an LOPO procedure and
outputs an FAU-Net valence score sFAU reflecting the eval-
uation of the generated image derived from the facial ex-
pression reaction. Note that the AU estimation model is
frozen and not trained with the FERGI data.

6.2.3 Integrate FAU-Net Valence Score with Pre-
trained Scoring Models

We integrate our FAU-Net valence score and the pre-trained
scoring model with a simple linear combination:

sm + amsFAU, (5)

where m represents the specific pre-trained scoring model,
sm the score from model m, and am the weight for integrat-
ing m and the FAU-Net valence score.

We separately investigated the effect of integrating the
FAU-Net valence score with each of the three scoring mod-
els trained on large human preference datasets (ImageRe-
ward, PickScore, and HPS v2), and their ensemble. Here,
we only fit the weights aIR, aPick, aHPSv2, and aens individ-
ually with an LOPO procedure using grid search (from 0.0
to 10.0 with a granularity of 0.1); the FAU-Net weights and
the weightings wIR, wPick, wHPSv2 computed in Eq. (3) are
not modified at this stage.

Table 2. Accuracy of image preference prediction for a total of
3734 image pairs. The second column shows the accuracy of the
models given in the first column when they make predictions in-
dependently while the third column shows the accuracy of the best
few when they are integrated with the FAU-Net valence score.

Model Ind. Acc. Acc. w/ AUs
CLIP Score 57.74 /

Aesthetic Score 50.32 /
BLIP Score 50.05 /

FAU-Net Valence Score 59.35 /
ImageReward Score 60.47 65.21

PickScore 63.28 66.28
HPS V2 Score 62.00 66.87

Ensemble Baseline Score 65.80 68.64

The results are shown in Tab. 2. Integration with FAU-
Net valence score improves the performance of all four
baseline models. Specifically, by further integrating all
three pre-trained human preference scoring models together
with the FAU-Net valence score, we achieve the highest
accuracy of 68.64%, outperforming the ensemble of the
three models by a margin of 2.84% (p < 0.01 with a two-
proportion z-test).

6.2.4 Complementarity between FAU-Net and Pre-
trained Scoring Models

The complementarity between FAU-Net and pre-trained
scoring models is demonstrated in Fig. 4. The figure shows
how annotation accuracy changes if only a subset of the
data are selected to annotate by the different scoring mod-
els (image pairs are selected based on the largest absolute
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Figure 4. FAU-Net valence score is complementary to the other pre-trained scoring models. Each subfigure shows how annotation
accuracy changes if only a subset of the data are selected to annotate by the different scoring models (given in the subcaption label), with
the x-axis representing the proportion of data selected (image pairs are selected based on the largest absolute difference of scores for the
two images) and the y-axis representing the annotation accuracy within the selected subset. Each model is good at estimating the image
pairs that it will perform well on as evidenced by increased accuracy for a smaller selected proportion. Note the blue, green, and orange
curves are almost on top of each other.

difference scores for the two images given by the associ-
ated scoring model). We can clearly see that the three pre-
trained scoring models are highly correlated showing sim-
ilar performance curves (almost overlapping). In contrast,
our FAU-Net valence score selects different image pairs, ex-
plaining why the FAU-Net valence scores combine syner-
gistically with the other scores.

6.2.5 FAU-Net Analysis

We analyze the weights of the trained FAU-Net to better
understand the model. Figure 5 shows the weights from
the input preprocessed AU activation values to the nodes in
the hidden layer (given that the preprocessings of activation
values are still all increasing functions after model training)
with the subcaptions illustrating the weight from the cor-
responding hidden node to the output node. Generally, for
hidden nodes positively affecting the output score, they re-
ceive positive weights from the activations of AU2, AU6,
AU12, AU17, AU20, and AU26 and negative weights from
the activations of AU4, AU5, AU9, AU17, and AU25, and
for hidden nodes negatively affecting the output score, they
receive weights of the opposite signs from the AUs. Similar
trends are observed for the weights from the input prepro-
cessed AU activation values and the output node as shown
in Fig. 6.

7 Discussion and Conclusion

We propose that user facial expression reactions to text-to-
image generation can be used to score user preferences for
the generated images, which is complementary to existing
scoring models which estimate human preferences based
only on the input text prompts and generated images. We
present the FERGI dataset, consisting of video recordings
of facial expression reaction to text-to-image generation,

and show that multiple AUs are correlated with the partici-
pant’s evaluation of and emotional reaction to the generated
image.

Specifically, we developed an FAU-Net that receives the
detected AU activations in the facial expression reaction as
inputs and outputs an FAU-Net valence score as the esti-
mation of the user preference. Integrating the FAU-Net va-
lence score with pre-trained scoring models improves their
accuracy in image preference prediction, which can be po-
tentially helpful when the scoring models are used to label
human preferences for fine-tuning text-to-image generative
models.

Importantly, previous work has shown that even if the
accuracy of the predictions is not very high, it can still be
effective for fine-tuning of text-to-image models: Xu et al.
[79] used the reward model ImageReward (trained from
manually labeled human preferences), which only has an
accuracy of 65.14% on their own dataset and 60.47% on
our FERGI dataset, to fine-tune SD v1.4 and obtained a new
model whose generated images were preferred by humans
58.79% of the time over those generated by the original SD
v1.4. (see Tab. 4 and Fig. 6 of [79]).

We also demonstrated the complementarity between our
FAU-Net and the pre-trained scoring models, explaining
why integrating them effectively improves the annotation
accuracy. As they are respectively better at annotating dif-
ferent sets of image pairs, it is also potentially feasible to
use them to fine-tune each other on data where one model
gives larger absolute difference of scores for the two im-
ages.

In conclusion, we have demonstrated the feasibility of
automatically scoring user preferences for image genera-
tion from facial expression reaction. The application of
this method is not limited to text-to-image generation but
may also be potentially applicable to other image genera-
tion tasks, such as image-to-image translation [57], image
inpainting [22], and super-resolution [74].
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Figure 5. Weights of hidden nodes. Each subfigure shows the weights from the input preprocessed activation values of the 12 AUs
to a hidden node in the FAU-Net, with each subcaption illustrating the weight from the hidden node to the output node (red/green for
negative/positive weights). The hidden nodes are ordered by the weights from them to the output node in this figure.
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Figure 6. Weights of the output node. The weights from the input preprocessed activation values of the 12 AUs to the output node in the
FAU-Net.
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Huang, and Virginia R. de Sa. Automated pain detection in
facial videos of children using human-assisted transfer learn-
ing. In Lecture Notes in Artificial Intelligence 11326 Arti-
ficial Intelligence in Health Revised Selected Papers from
the First International Workshop, AIH 2018, pages 162–180,
2018.

[82] Xiaoxing Xu, J.S. Huang, and V.R. de Sa. Pain evaluation in
video using extended multitask learning from multidimen-
sional measurements. In Proceedings of Machine Learning
Research, (Machine Learning for Health ML4H at NeurIPS
2019), 2019.

[83] Jiannan Yang, Fan Zhang, Bike Chen, and Samee U Khan.
Facial expression recognition based on facial action unit. In
2019 Tenth International Green and Sustainable Computing
Conference (IGSC), pages 1–6. IEEE, 2019. 2

[84] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, et al. Scaling autoregres-
sive models for content-rich text-to-image generation. arXiv
preprint arXiv:2206.10789, 2(3):5, 2022. 1

[85] Ligang Zhang, Brijesh Verma, Dian Tjondronegoro, and
Vinod Chandran. Facial expression analysis under partial
occlusion: A survey. ACM Computing Surveys (CSUR), 51
(2):1–49, 2018. 4

[86] Zicheng Zhang, Chunyi Li, Wei Sun, Xiaohong Liu,
Xiongkuo Min, and Guangtao Zhai. A perceptual qual-
ity assessment exploration for aigc images. arXiv preprint
arXiv:2303.12618, 2023. 1, 2

[87] Kaili Zhao, Wen-Sheng Chu, Fernando De la Torre, Jeffrey F
Cohn, and Honggang Zhang. Joint patch and multi-label
learning for facial action unit detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2207–2216, 2015. 2

[88] Kaili Zhao, Wen-Sheng Chu, and Honggang Zhang. Deep
region and multi-label learning for facial action unit detec-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3391–3399, 2016.

[89] Ruicong Zhi, Mengyi Liu, and Dezheng Zhang. A compre-
hensive survey on automatic facial action unit analysis. The
Visual Computer, 36:1067–1093, 2020. 2

13



FERGI: Automatic Scoring of User Preferences for Text-to-Image Generation
from Spontaneous Facial Expression Reaction

Supplementary Material

A Supplementary Visuals
To better illustrate the idea of our paper, we present Fig. S1
showing an example of a strong AU4 activation in response
to a low-quality image generation and Fig. S2 an example
of a strong AU12 activation in response to a high-quality
image generation.

B Data Collection
This section provides more details of the collection of the
FERGI dataset not provided in Sec. 3. Figs. S3 to S9 display
screenshots of an example of one session in data collection.

B.1 Participants
39 participants1 were recruited from the SONA system of
University of California San Diego (UCSD). and received
academic credits as compensation. They underwent the
informed consent process and received instruction for the
study from the researcher via a videoconference and com-
pleted the study asynchronously afterwards on their per-
sonal computers. The videos of 3 participants failed to
record and displayed only a logo of OBS Studio (the rea-
son has not yet been fully understood by the researchers);
1 participant dropped out of study under the instruction of
the researcher because the only available personal device
was a tablet, which is not compatible with some procedures
of the study; 1 participant did not complete any study ses-
sions asynchronously at all after receiving the instruction in
the videoconference. Among the other 34 participants with
valid data and videos recorded, only 1 participant chose
not to permit video recordings being shared with other re-
searchers for research purposes; therefore, we decided to
also exclude the data of this participant in our analysis for
enhancing reproducibility of our study within the research
community. We ended up with a dataset of 33 participants
that will be made available to researchers for research pur-
poses.

B.2 Prompt Creation
There are two forms of sessions, structured input (SI) ses-
sions and free-form input (FFI) sessions. Most participants

1The user IDs are up to 040 as shown in Tab. S1 because the same
participant used both 027 and 028 due to some technical issues. Though,
no data was collected under the user ID 027.

completed the same number of structured input sessions
and free-form input sessions. The number of sessions com-
pleted by each participant are shown in Tab. S1. By default,
each participant is expected to complete 9 structured input
sessions and 9 free-form input sessions (for the first 13 out
of the 33 participants chronologically) or to complete 10
structured input sessions and 10 free-form input sessions
(for the last 20 out of the 33 participants chronologically).
However, the time consumption highly varies for each par-
ticipant because of numerous reasons (e.g. internet connec-
tion), and various technical issues also occur occasionally,
so the total number and categories of completed sessions
also vary.

B.2.1 Structured Input

The purpose of having structured input sessions is to en-
courage creation of more diverse text prompts featuring dif-
ferent types of objects, interactions, settings, and styles.
Structured input contains 5 sections:
• Animate Objects (Fig. S3a): Any object that can do

things, including humans, animals, robots, fantasy crea-
tures, etc. Participants are required to enter the name and
quantity of the object, with activity and a list of charac-
teristics as optional inputs.

• Inanimate Objects (Fig. S3b): Any object that cannot do
things, including plants, vehicles, furniture, etc. Partici-
pants are required to enter the name and quantity of the
object, with a list of characteristics as optional inputs.

• Interactional Relations (Fig. S3c): Relationship be-
tween an animated object and any other object (something
an animate object does to another object). An animate ob-
ject can only be in a relation if its “activity” field is empty.
All objects can only be involved in at most one relation
(either interactional or positional).

• Positional Relations (Fig. S3d): Relationship between
any two objects. An animate object can only be in a re-
lation if its “activity” field is empty. All objects can only
be involved in at most one relation (either interactional or
positional).

• Other Inputs (Fig. S4): The location of image as back-
ground or general environment, the style of the image,
and a list of keywords to append at the end of the prompt.
After participants finish with the input sections and click

“generate prompt”, a prompt will be generated based on all
of the inputs with LLM (OpenAI gpt3.5-turbo model). Par-
ticipants can freely adjust the generated prompt as the fi-
nal prompt. Screenshots of an example of the inputs and
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(a) (b) (c) (d)

Figure S1. An example of AU4 activation in response to a low-quality image generation. (a) The input text prompt. (b) The facial
expression of the participant before seeing the generated image. (c) The generated image. (d) The facial expression of the participant
after seeing the generated image (the frame with the highest estimated AU4 intensity). In the annotation survey, the participant gave an
overall rating of 2, an image-text alignment rating of 2, and a fidelity rating of 1; she identified the image with the issues “output contains
unwanted content that was not mentioned in the text prompt” and “existence of body problem”; she reported that she felt “disappointed”
when seeing the image; she ranked the image as the worst among the five images generated from the same prompt.

(a) (b) (c) (d)

Figure S2. An example of AU12 activation in response to a high-quality image generation. (a) The input text prompt. (b) The facial
expression of the participant before seeing the generated image. (c) The generated image. (d) The facial expression of the participant after
seeing the generated image (the frame with the highest estimated AU12 intensity). In the annotation survey, the participant gave ratings of
7 for each of image-text alignment, fidelity, and overall rating; he did not identify any issues with the image; he reported feeling “satisfied”,
“surprised”, and “amused” when seeing the image; he ranked the image as the best among the five images generated from the same prompt.

prompt generation for a structured input session are shown
in Figs. S3 and S4.

B.2.2 Free-Form Input

The purpose of free-form input is to provide freedom and
flexibility for participants to experiment with any prompts
to complement the less flexible input style of structured in-
put. The participants are provided with an example prompt
and a text box to enter the entire prompt as the final prompt.
A screenshot of an example of the prompt creation page for
a free-form input session is shown in Fig. S5.

B.3 Image Presentation

Screenshots of an example of the pages for image presenta-
tion and its baseline are shown in Figs. S6 and S7.

B.3.1 Image Annotation

The annotation survey was adapted from the survey de-
signed for ImageReward [79] and has the following com-
ponents:
• Participants can optionally provide a typed, comma-

separated response indicating any phrase or parts of the
prompt that are not reflected by the generated image.

• Participants provide star ratings from 1 to 7 for image-text
alignment, fidelity, and overall rating for the generated
image.

• Participants can optionally select from a list of common
issues to report the issues the generated image has.

• Participants can optionally select from a list of emotions
to report their feelings when seeing the image.

A screenshot of an example of the image annotation page
(including the details of the questions) is shown in Fig. S8.
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User ID Number of SI Sessions Number of FFI Sessions Number of Valid Images
001 10 10 100
002 5 5 50
004 9 9 87
005 9 9 85
006 9 9 90
007 9 9 88
008 9 9 85
009 9 9 88
010 9 8 84
011 9 9 87
012 8 8 80
015 9 9 89
016 10 10 100
017 3 0 15
018 11 4 75
020 10 10 92
021 9 9 87
022 9 6 75
023 10 10 99
024 10 2 58
025 3 10 63
026 10 10 100
028 0 20 99
030 10 10 99
031 10 10 100
032 10 10 99
033 10 10 99
034 10 10 98
035 10 10 99
037 10 10 100
038 10 10 96
039 10 10 96
040 9 4 65

Total 288 288 2827

Table S1. Information of the FERGI dataset. Numbers of structured input (SI) sessions, numbers of free-form input (FFI) sessions, and
numbers of valid images for each participant are shown.

B.3.2 Image Ranking

After the participants finish annotating all 5 generated im-
ages, they will be asked to rank them from best to worst.
All 5 images are displayed side by side, with the left side
labeled “Best” and right side labeled “Worst”, and the par-
ticipants provide ranking by dragging the images to reorder
them. A screenshot of an example of the image ranking
page is shown in Fig. S9.

C AU Model Training
This section provides more details of the training of the AU
model not provided in Sec. 4.

C.1 Datasets
The DISFA dataset [53] contains facial video recordings of
27 participants’ spontaneous facial expression while view-
ing video clips with approximately 130, 000 frames in to-
tal. Each frame is manually annotated by a human expert
with intensities of AU1 (inner brow raiser), AU2 (outer
brow raiser), AU4 (brow lowerer), AU5 (upper lid raiser),
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AU6 (cheek raiser), AU9 (nose wrinkler), AU12 (lip corner
puller), AU15 (lip corner depressor), AU17 (chin raiser),
AU20 (lip stretcher), AU25 (lips part), and AU26 (jaw drop)
on a scale of 0 to 5. See Fig. S10 for a visual reference guide
for the analyzed AUs.

The DISFA+ dataset [51] is an extension of the DISFA
dataset [53]. It contains facial video recordings of 9 partic-
ipants’ posed and spontaneous facial expression with each
frame being annotated with the same 12 AUs on a scale of
0 to 5.

C.2 Video Preprocessing
For each frame of the video, we first detect and crop the
largest face in the image using MediaPipe [48] and then
align the face with Pytorch Face Landmark Detection [8].
Then, we further employ a combination of histogram equal-
ization and linear mapping [38] to increase the global con-
trast of the facial image. The facial images are resized to
112 × 112 pixels before being fed into the neural network.
Similar preprocessing is also applied to the videos we ana-
lyze in the FERGI dataset.

C.3 Model Training
We use the neural network IR-50 [13] pre-trained on
Glink360k [1] and fine-tune it on the DISFA and DISFA+
datasets [51, 53]. The last layer of the network is modi-
fied so that it outputs the estimation of the AUs in two for-
mats: for estimating the intensity of the ith AU yi, it out-
puts 1 value ŷi,reg representing the numerical estimation of
the AU intensity (in the format of regression) and 5 values
ŷi,class(1), ŷi,class(2), ŷi,class(3), ŷi,class(4), and ŷi,class(5) re-
spectively representing the estimated probability of the AU
intensity being higher than or equal to 1, 2, 3, 4, and 5 [55]
(in the format of binary classifications). The loss function
consists of three parts:

E = Ereg,MSE + Ereg,cos + Eclass, (6)

where Ereg,MSE, Ereg,cos, and Eclass respectively represent
a mean squared error (MSE) loss for the numerical estima-
tions

Ereg,MSE = Σn
i=1wi,yi

(yi − ŷi,reg)
2, (7)

a cosine similarity loss for the numerical estimations

Ereg,cos = 1− Σn
i=1yiŷi,reg

(Σn
i=1y

2
i )(Σ

n
i=1ŷ

2
i,reg)

, (8)

and a cross entropy loss for the binary classification estima-
tions

Eclass = Σn
i=1Σ

5
j=1wi,j,χyi≥j

CE(χyi≥j , σ(ŷi,class(j))),
(9)

with the cross entropy function being

CE(y, ŷ) = −[yi log(ŷi) + (1− yi) log(1− ŷi)]. (10)

The weights for the MSE loss and those for the cross en-
tropy loss are both inverse-frequency weighted (for the
MSE loss these are based on the merged groups of {0, 1}
and {2, 3, 4, 5}). Specifically, the weights for the MSE loss
are defined as
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while the weights for the cross entropy loss are defined as
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(12)

where ni,j represents the number occurrences of the ith AU
with an intensity of j.

Notably, although we train the neural network to learn
both numerical estimations and binary classification estima-
tions of the AU intensities, only the numerical estimations
are used in model inference.

For model training, we employ the Adam optimizer with
an initial learning rate of 10−4 for parameters of the last
layer and an 10−5 for other parameters, a weight decay of
5 × 10−4, and a batch size of 64. We train the model on
all data from the DISFA and DISFA+ datasets [51, 53] for
a total of 3 epochs using a single NVIDIA GeForce GTX
1080Ti 11G GPU for about 1 hour.

D Data Filtering
This section provides the details of frame exclusion not pro-
vided in Sec. 5.1.

We aim to exclude frames with occlusions and frames
with off-angle pitch or yaw. To achieve the goal, we follow
the following three exclusion rules:
• Frames with a face detection confidence score (FDCS)

lower than 0.9 are excluded. The FDCS is given by Me-
diaPipe [48]. Low FDCS is likely caused by occlusions.

• Frames with a yaw indicative ratio (YIR) out of the range
of [0.3, 0.7]. The YIR is computed as

YIR =
deye-edge,left

deye-edge,left + deye-edge,right
, (13)

4



where deye-edge,left represents the horizontal distance be-
tween the left eye and the left edge of the face while
deye-edge,right represents the horizontal distance between
the right eye and the right edge of the face, both of which
are computed based on the facial landmarks detected with
[8].

• Frames with a pitch indicative ratio (PIR) out of the range
of [0.55, 0.85]. The PIR is computed as

PIR =
dnostrils-eyes

deyes
, (14)

where dnostrils-eyes represents the vertical distance between
the center of the nostrils and the center of the eyes while
deyes represents the horizontal distance between the two
eyes, both of which are computed based on the facial
landmarks detected with [8].
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(a) Animate objects

(b) Inanimate objects

(c) Interactional relations

(d) Positional relations

Figure S3. An example of the basic inputs for the prompt creation of structured input sessions.
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Figure S4. An example of other inputs and prompt generation for the prompt creation of structured input sessions.

Figure S5. An example of the prompt creation page for the free-form input sessions.
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Figure S6. An example of a baseline page.

Figure S7. An example of an image presentation page.
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Figure S8. An example of an image annotation survey page.
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Figure S9. An example of an image ranking page.
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Figure S10. A visual reference guide for the analyzed AUs extracted from [56].
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